0% Plagiarism Guaranteed & Custom Written

(a) Determine P4(x), the 4th degree Maclaurin polynomial of the integrand cos(x2).

19 / 01 / 2019 Maths

This paper circulates around the core theme of (a) Determine P4(x), the 4th degree Maclaurin polynomial of the integrand cos(x2). together with its essential aspects. It has been reviewed and purchased by the majority of students thus, this paper is rated 4.8 out of 5 points by the students. In addition to this, the price of this paper commences from £ 24. To get this paper written from the scratch, order this assignment now. 100% confidential, 100% plagiarism-free.

1. Consider the series ∞
X n=3
loge n np
, p ≥ 1.
Determine the values of p for which the series converges. 2. Consider the integral Z π 4 0 cos(x2)dx. Since we cannot evaluate the integral exactly, we will approximate it using Maclaurin polynomials.
(a) Determine P4(x), the 4th degree Maclaurin polynomial of the integrand cos(x2). (b) Use MATLAB to check your answer to part (a). (c) Find an approximation to the integral by integrating P4(x). (d) Obtain an upper bound on the magnitude of the error in the integration in part (c).
3. Consider the periodic function
g(t) =  
0, −1 < t < 0
cos(πt), 0 < t < 1
with g(t) = g(t + 2).
(a) Determine a general expression for the Fourier series of g. (b) Use MATLAB to plot both g and the sum of the first 5 non-zero terms of the Fourier series for g on the same set of axes for −3 < t < 3.



100% Plagiarism Free & Custom Written


International House, 12 Constance Street, London, United Kingdom,
E16 2DQ

Company # 11483120

STILL NOT CONVINCED?

We've produced some samples of what you can expect from our Academic Writing Service - these are created by our writers to show you the kind of high-quality work you'll receive. Take a look for yourself!

View Our Samples

Benefits You Get

  • Free Turnitin Report
  • Unlimited Revisions
  • Installment Plan
  • 24/7 Customer Support
  • Plagiarism Free Guarantee
  • 100% Confidentiality
  • 100% Satisfaction Guarantee
  • 100% Money-Back Guarantee
  • On-Time Delivery Guarantee