# 1. If the function f is monotonic on (a,) then ’f’ is ______________ on (a,b) 2. Riemann Integral S(P,f)=____________ 3.

19 / 01 / 2019 Maths

This paper circulates around the core theme of 1. If the function f is monotonic on (a,) then ’f’ is ______________ on (a,b) 2. Riemann Integral S(P,f)=____________ 3. together with its essential aspects. It has been reviewed and purchased by the majority of students thus, this paper is rated 4.8 out of 5 points by the students. In addition to this, the price of this paper commences from £ 72. To get this paper written from the scratch, order this assignment now. 100% confidential, 100% plagiarism-free.

. If Vf (a,b) ↔ f is   a) Bounded     b)Continuous   c)Increasing   d)None  2. The Point (x,y)  obtained by solving fx=0 and fy=0 as known as  a) Saddle Point  b)Extreme Point  c)Critical Point    d)None  3. A function which is increasing and  decreasing is known as  a) Bounded   b) Continuous     c) Analytic   d)Monotonic   4. A function f is said to be a function of Bounded variation then                 a) ∑|∆fk|≥M   b) ∑|∆2fk|0 then q is called                 a) Positive definite  b) Negative definite   c) Semi positive   d) Semi Negative          9.   If Q= Y|DY is known as                a) Signature of Q   b)Index of Q   c) Diagonal of Q   d) None        10.  In computation of M‐P Inverse A|A=               a)B      b)A      c)I       b) A|        Fill in  the Blanks:  (10*1/2=5)

1. If the function f is monotonic on (a,) then  ’f’ is ______________ on (a,b)  2. Riemann Integral S(P,f)=____________  3. Total Variation Vf (a,b) = ____________  4. ∆ fk =  5. The Taylor’s expansion of f(a+h,b+k)=___________________________  6. The rank of moore Penrose inverse of A =____________  7. If H is idempotent then H2  8. If A is Positive definite then the characteristic roots of A are _________  9. In the Gram Schmidt orthogonalization process the basis Zk=___________  10. The Moore Penrose inverse is always _______________

1. Define Extreme and saddle point  2. Define Simultaneous limit  3. Define Repeated limit  4. Define Riemann stielties  integral(RS Integral)  5. What is finer partition  and give one example  6. Define Quadratic form and index and signature  7. Define orthogonal basis and orthonormal basis   8. Gram Schmidt Orthogonalization process  9. Prove if AX=g is consistent iff AA‐|g=g  10. Define GramMatrix

### 100% Plagiarism Free & Custom Written

International House, 12 Constance Street, London, United Kingdom,
E16 2DQ

Company # 11483120

## STILL NOT CONVINCED?

We've produced some samples of what you can expect from our Academic Writing Service - these are created by our writers to show you the kind of high-quality work you'll receive. Take a look for yourself!

View Our Samples

## Benefits You Get

• Free Turnitin Report
• Unlimited Revisions
• Installment Plan
• Plagiarism Free Guarantee
• 100% Confidentiality
• 100% Satisfaction Guarantee
• 100% Money-Back Guarantee
• On-Time Delivery Guarantee 